Triggering and Modulation of Slow Slip: Implications for Mechanics and Hazard

Roland Bürgmann, UC Berkeley

With contributions, slides, data, and thoughts from Amanda Thomas, Bob Nadeau, David Shelly, Zhengkang Shen, Yongge Wan, John Wahr, Nick Beeler, Dave Lockner, Noel Bartlow, Herb Dragert, Gary Rogers, Zhigang Peng, David Hill, Aaron Wech, Ken Creager, John Vidale, Stephen Holtkamp, Mike Brudzinski, Tim Melbourne and TFS Institute participants.
Triggering and Modulation of Slow Slip: Implications for Mechanics and Hazard

Roland Bürgmann, UC Berkeley

With contributions, slides, data, and thoughts from Amanda Thomas, Bob Nadeau, David Shelly, Zhengkang Shen, Yongge Wan, John Wahr, Nick Beeler, Dave Lockner, Noel Bartlow, Herb Dragert, Gary Rogers, Zhigang Peng, David Hill, Aaron Wech, Ken Creager, John Vidale, Stephen Holtkamp, Mike Brudzinski, Tim Melbourne and TFS Institute participants.
Opportunities offered by Transient Fault Slip and Tremor

• What are conditions, mechanical properties and dynamics of lower crustal faulting?

• What is the geology, structure and environment around deep roots of major fault zones?

• What are implications for initiation of large earthquake ruptures?

Steve Malone
Opportunities offered by Transient Fault Slip and Tremor

- Observations of slow slip and tremor illuminate structure, environment, mechanics, and rheology of deep shear near base of crust.

- Tremor and slow slip are easily triggered: Response to various types, amplitudes and frequencies of external loads probes mechanical properties.

- We can use observations from natural laboratory to inform rock mechanics experiments and constrain mechanical models.

Shelly et al., 2010 submitted

Monday, November 1, 2010
Triggering and Modulation of ETS and Tremor at Cascadia

Rubinstein et al., 2007 Science

Holtkamp and Brudzinski, 2010
Rubinstein et al., 2007 Nature
Semidiurnal Modulation of Tremor?

- Peak tremor activity occurs at times of maximum tidal shear stress in the thrust direction.

Rubinstein et al., 2007 Science

Lambert et al., 2009 JGR
Fortnightly Tide Modulation of ETS and inter-ETS?

Tidal analysis using 2006-2010 tremor episode catalog for northern Washington by Wech and Creager (pers. comm.)

Wech and Creager, 2010 SSA
14-month Pole-Tide Modulation of ETS?

Brudzinski and Allen, 2007 Geology

Shear stress

Normal stress

N Cascadia

S Cascadia

Shen et al., 2005 BSSA
Updated pole-tide analysis using 1982 – 2010 ETS Catalog by Rogers and Dragert (pers. comm.)

While being episodic at very similar period, phase shifts to negative stress in 1980s.
Long-period Triggering of ETS and Tremor at Cascadia

- There are other long-period forcings, in particular seasonal hydrological loads
- Correlated tremor episode along arc suggest external triggering

Seasonal surface load from GRACE data and hydrological models (John Wahr, unpublished)
Long-period Triggering of ETS and Tremor at Cascadia

• There are other long-period forcings, in particular seasonal hydrological loads
• Correlated tremor episode along arc suggest external triggering

Seasonal surface load from GRACE data and hydrological models (John Wahr, unpublished)
Triggered Tremors and LFEs at Parkfield

Nadeau & Guilhem, 2009 Science

Gomberg et al., 2008 Science

Monday, November 1, 2010
Triggering by Regional and Global Earthquakes

Guilhem et al., 2010

Shelly et al., 2010 submitted
Triggering by Regional and Global Earthquakes

Guilhem et al., 2010

Shelly et al., 2010 submitted
• Tremors, but not earthquakes are easily triggered by tidal stress cycles
• Right-lateral shear stress (≤ 150 Pa) parallel to SAF triggers tremor
• Almost no normal-stress triggering \rightarrow low friction $\mu = 0.02$
Friction and Effective Stress are Very Low

- Tremors, but not earthquakes are easily triggered by tidal stress cycles
- Right-lateral shear stress (≤ 150 Pa) parallel to SAF triggers tremor
- Almost no normal-stress triggering \rightarrow low friction $\mu = 0.02$

Thomas et al., 2009 Nature

Overburden > 600 MPa (600,000,000 Pa)

Monday, November 1, 2010
Triggering is Spatially Heterogeneous

- Variable tidal triggering of tremor with depth and along fault

Thomas, Shelly & Bürgmann, 2010 SSA
Overburden > 600 MPa

Triggering is Spatially Heterogeneous

Thomas, Shelly & Bürgmann, 2010 SSA

• Variable tidal triggering of tremor with depth and along fault

Monday, November 1, 2010
Triggering is Spatially Heterogeneous

Shelly, 2010
Triggering is Spatially Heterogeneous

Shelly, 2010

N = 17
Exploring Mechanical Behavior

Coulomb threshold response
Correlation with peak stressing rate

Static stress trigger threshold ~ 1 kPa

\[f_a = \frac{\dot{\tau}}{2\pi a \sigma_e} \] (Dieterich, 1992)

- Observations of triggering by periodic forcings can be used to explore frictional properties of tremors
- Are LFE directly triggered or modulated by varying creep rate?

Triggering amplitude goes down with decreasing effective stress

Monday, November 1, 2010
Time to Build Tremor Observatories

- UW Array of Arrays
- Proposed TremorScope borehole/surface network
- We seek precise locations and detailed characterization of even the smallest tremor, LFE and VLF sources over long time period
- Tremor and earthquake data can be used to illuminate crustal structure and environment using receiver functions and seismic/ambient noise tomography
(1) We should optimize our observational tools for study of TFS and tremor

(2) Most important on the path ahead is to seek connections and build bridges between seismologic, geodetic and geologic observations and laboratory and modeling studies
(1) We should optimize our observational tools for study of TFS and tremor

(2) Most important on the path ahead is to seek connections and build bridges between seismologic, geodetic and geologic observations and laboratory and modeling studies