Applying Cross-Correlation Methods to Broadband and Nodal Data to Detect and Locate Earthquakes Associated with the Socorro Magma Body

Rhiannon E. Vieceli
Susan L. Bilek
Lindsay Lowe-Worthington, Brandon Schmandt, Richard Aster
Background

- 2nd largest known mid-crustal magma body
- \(\sim 3400 \text{ km}^2 \) in areal extent
- Planar surface
- Top-depth of \(\sim 19 \text{ km} \)
- Uplift rate 1 - 3 mm/yr

Socorro

Fialko and Simons [2001]
Geology of the SMB Region

- Dikes
- Volcanic Vents
- Faults
- SMB
- SSA
Outstanding Questions and Efforts

Emplacement?

Duration?

Migrating?

Thickness?

Geometry?

Magneto-telluric
[Matt Folsom; NMT]
[Jeff Pepin; NMT]

Geomorphology
[Brad Sion; NMT]

Emplacement Modeling
[Shuoyu Yao; NMT]

Tomography
[Nishath Ranasinghe; UNM]

Attenuation [Jon Schmidt; NMT]
Motivation

- Known associated earthquakes
 - The Socorro Seismic Anomaly
 - ~ 23% all NM M ≥ 2.0 events
 - Swarms every 8 - 10 yrs

- Potential volcanism

- Is there a magma diapir extending upwards from the SMB?

Morton MS thesis NMT [2013]
Earthquake History & Regional Stations

Digital waveform data available from 1999 - present.
Detect earthquakes using cross correlation

Obtain initial locations using existing 1D velocity model

Problem! Limited earthquake catalog

Deploy more instruments ⇒ More data!

Relocate earthquakes using 3D velocity model

Develop 3D seismic velocity model using tomography

[seismic - gravity joint inversion]

Diapir or no diapir?

Revise Project

Answer!

Results & Interpretation

Other seismic observations

Other seismic observations
Detect earthquakes using cross correlation

Obtain initial locations using existing 1D velocity model

Problem!
Limited earthquake catalog

Deploy more instruments
More data!

Revise Project
Answer!

Diapir or no diapir?

Relocate earthquakes using 3D velocity model

Develop 3D seismic velocity model using tomography

[seismic - gravity joint inversion]

Results & Interpretation
Other seismic observations

Revise Project

Other seismic observations
Data

February 2015 deployment
- largest of its kind in SMB region

7 Broadband Stations
- operated ~1 month
- 500 Hz
- 3 component

804 Nodal Instruments
- operated ~2 weeks
- 250 Hz
- Z only
Geology of the SMB Region
Detect Earthquakes Using Cross Correlation

Cross Correlation: A measure of similarity between two signals as a function of a time lag applied to either of the signals, relative to the other.
Detect Earthquakes Using Cross Correlation

Template Waveform \rightarrow Cross Correlation Threshold \rightarrow Possible Detection
Obtain Initial Locations Using 1D Seismic Velocity Model

Hartse et al. [1992]
Develop 3D Seismic Velocity Model Using Tomography

Seismic Tomography:
Use measured travel times to solve an inverse problem to obtain seismic velocities.

Relocate Events Using 3D Seismic Velocity Model
Preliminary Results

![Map of Preliminary Results](image.png)

<table>
<thead>
<tr>
<th>Template</th>
<th>Station</th>
<th>CC Threshold</th>
<th># Verified Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAR</td>
<td>0.45*</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>CAR</td>
<td>0.60</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>MCKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>POPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BAR</td>
<td>0.45*</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>CAR</td>
<td>0.45*</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>SBY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MCKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>POPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BLSPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BFT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PIC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BAR</td>
<td>0.45*</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>CAR</td>
<td>0.52</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MCKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BLSPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BFT0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PIC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BAR</td>
<td>0.41</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CAR</td>
<td>0.45*</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>MCKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BLSPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BFT0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Results Example

Template 2
M 0.87

CAR (EHZ channel, SC Network)

Time (s)
Example Nodal Recordings of Template 3 (M -0.32)
Detect earthquakes using cross correlation

Obtain initial locations using existing 1D velocity model

Problem! Limited earthquake catalog

Develop 3D seismic velocity model using tomography
[seismic - gravity joint inversion]

Relocate earthquakes using 3D velocity model

Results & Interpretation

Answer!

Revise Project

Deploy more instruments ⇒ More data!

Diapir or no diapir?

Other seismic observations

Project

Other seismic observations
Thank You!

Questions?