Spatial Variation of slip behavior beneath the Alaska Peninsula including Shumagin and Semidi Islands along Alaska-Aleutian Subduction Zone

Shanshan Li¹, Jeff Freymueller¹

May 16th, 2017

¹ Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA
Outline

- Background and Motivation
- GPS Data
- Preliminary Results
 - Inconsistency between the horizontal and vertical velocities
 - Models for different segments
 - Locate the Boundaries where there are sharp changes in coupling distribution
 - Test for sharp versus gradual along-strike change in coupling distribution
 - Relationship between the plate fabric from magnetic anomaly and the estimated fault coupling distribution
- Summary
Background and Motivation
Previous study of Along-strike Variation In Fault Coupling

Slip deficit model from Fournier and Freymueller (2007). Data (red) and model (black) velocity vectors are shown. All of the data have been corrected for arc translation (Cross and Freymueller, 2007)
Research Motivation

1. Given a more dense GPS network, what is the Along-strike variation in the coupling distribution?

2. Does the estimated coupling distribution correlate with features of the overriding or downgoing plates from other observations (ALEUT Program)?
GPS Data
Data Used in the Previous Study
... and now

Jeff’s GeoPRISMS Report
Preliminary Result
Preliminary Results

- Inconsistency between the horizontal and vertical velocities
- Models for different segments
- Locate the Boundaries where there are sharp changes in coupling distribution
- Test for sharp versus gradual along-strike change in coupling distribution
- Relationship between plate fabric from magnetic anomaly and the estimated fault coupling distribution
Inconsistency between horizontal and vertical velocities

Best fit model for inverted coupling distribution by using horizontal and vertical velocities both (smoothing factor = 4e8)
Inconsistency between horizontal and vertical velocities

Possible factors explaining the inconsistency:

- Differences in the geometry of the plate interface
 ---- Do not explain the inconsistency

- Glacial Isostatic Adjustment
 --- Existing models do not explain this

- Reference frame errors
 --- Do not explain this

For the following models, we only use horizontal component of GPS velocities.
Preliminary Results

- Inconsistency between the horizontal and vertical velocities

- **Models for different segments**

- Locate the Boundaries where there are sharp changes in coupling distribution

- Test for sharp versus gradual along-strike change in coupling distribution

- Relationship between plate fabric from magnetic anomaly and the estimated fault coupling distribution
Models for Different Segments

Problems:

1. A standard optimal inversion model has significant **oversmoothing** of the coupling distribution

2. and **underestimates** the strong coupling variations in the along-strike direction
Models for Different Segments

Segment 1

Segment 2

Segment 3

Segment 4
Models for Different Segments

Forward model:

Initial coupling distribution based on the average values from best fit models in four segments.
Preliminary Results

- Inconsistency between the horizontal and vertical velocities

- Models for different segments

- **Locate the Boundaries where there are sharp changes in coupling distribution**

- Test for sharp versus gradual along-strike change in coupling distribution

- Relationship between plate fabric from magnetic anomaly and the estimated fault coupling distribution
Locate the boundaries where there are sharp changes in coupling distribution.
Locate the boundaries where there are sharp changes in coupling distribution.
Preliminary Results

- Inconsistency between the horizontal and vertical velocities
- Models for different segments
- Locate the Boundaries where there are sharp changes in coupling distribution
- **Test for sharp versus gradual along-strike change in coupling distribution**
- Relationship between plate fabric from magnetic anomaly and the estimated fault coupling distribution
Test for sharp versus gradual along-strike change in coupling distribution

Variation in Width of the First Boundary

Variation in Width of the Second Boundary

Variation in Width of the Third Boundary
Preliminary Results

- Inconsistency between the horizontal and vertical velocities
- Models for different segments
- Locate the Boundaries where there are sharp changes in coupling distribution
- Test for sharp versus gradual along-strike change in coupling distribution
- Relationship between plate fabric from magnetic anomaly and the estimated fault coupling distribution
Link between Variation in Plate Fabric, Hydration and Bending Faulting Along-Strike

- Orientation of spreading fabric with respect to the trench
- Reduced upper mantle velocities - hydration
- Serpentinite: ~16 wt% or ~1.8 wt% H₂O
- Little variation in upper mantle velocities

Shillington et al. 2015
Relationship between Significant Change in Estimated Fault Coupling and Change in Pre-existing Plate Fabric

- **Kula-Pacific** spreading center
 - Average rate ~60 mm/yr
 - Spreading age: 80 to 56 Ma

- **Farallon-Pacific** spreading center
 - Half rate ~40 mm/yr
 - Spreading age: 100 to 55 Ma

- **Vancouver-Pacific** spreading center
 - Similar rate as Farallon-Pacific
 - Spreading age: 53 to 30 Ma

Black Line:
- Transition from strong to weak fault coupling
- Change in pre-existing plate fabric due to
 - Cessation of Kula-Pacific spreading
 - The northern portion of Farallon Plate broke off and became the “Vancouver” plate in new spreading direction
Summary
Summary

1. There is an inconsistency between the horizontal and vertical velocities, and long-wavelength systematic misfits in the vertical velocities still remain unsolved.

2. The width of the locked region decreases step-wise from NE to SW along strike.

3. There are three sharp boundaries separating segments with different fault coupling.

4. The significant change in fault coupling from strong to weak is linked with the change in pre-existing plate fabric caused by:
 - Cessation of the Kula-Pacific spreading
 - Reorientation of the northern section of Farallon-Pacific spreading to Vancouver-Pacific spreading
Thank you