The upper-mantle structure beneath Alaska imaged by teleseismic S-wave reverberations
Shangqin Hao, Peter Shearer, Tianze Liu
Scripps Institution of Oceanography, University of California San Diego

Abstract
Alaska is a tectonically active region with a long history of subduction, but knowledge of its deep seismic structure is limited by a relatively sparse station distribution. By combining data from the EarthScope Transportable Array and other regional seismic networks, a high-resolution state-wide map of the Moho and upper-mantle discontinuities beneath Alaska is obtained using teleseismic SH-wave reverberations.

Crustal thickness is generally correlated with elevation with the receiver-reflections of slab under Alaska suggesting a slab above the MTZ. The inferred central Alaska, suggesting that the slab may have entered the MTZ, and a thinned MTZ under the Alaska Peninsula region, suggesting a slab above the MTZ. The inferred varying depths of slab under Alaska is also supported by tomography and receiver-function studies.

Background, Method and Dataset

Common-reflection-point method
- 120°-180° W, 50°-75° N, 4° (lon) x 2° (lat) cells with 2° and 1° overlaps
- Separate source and receiver-side contribution by inversion
- 5-s lowpass for the crust, 10-s lowpass for the MTZ
- Only plot cells contributed by >100 bounce points

Fig. 1 (a) Map of the research region. Tectonic features mentioned in this poster: AYA, Aleutian volcanic arc; Yakutat, Yakutat microplate. (b) and (c) are record section stacks of high-quality traces for the 10-s and 5-s lowpass datasets, respectively, aligned and normalized on direct S, with the black curves denoting the predicted topside S-reflections at 410- and 660-km depths based on the iasp91 model.

Fig. 2. Sn660s raypaths for both near-source and near-receiver reflections

Fig. 3. Cross sections (a-d), bounce points (e) and stations and events (f). Corrected using CRUST 1.0 model (Lasker et al., 2013).
- Crust: thick in northern and southern mountains and thin in central lowlands
- Negative pulses in the southwest: subparallel to the AYA & consistent with tomography – low-velocity layer
- Double peaks near Yakutat: shallowest peak – top interface of Yakutat plate; deeper peak – Yakutat Moho

Crust

- > 60° N: clearly resolved "410" and "660"
- < 60° N: some ambiguous peaks near 410- or 660-km depths
- Significant effect of tomography models on the depth, stacking coherence, and amplitude
- Results based on Jiang et al. (2018) are more continuous at low latitudes and consistent with prior receiver-function and tomography results

Mantle Transition Zone (MTZ)

- Yakutat (dashed line):
 - Thicker crust than prediction & High free-air gravity anomaly
 - Higher density of the Yakutat plate
- Brooks Range:
 - Weak crustal difference & Weak gravity anomaly – Isostatic equilibrium without the need to introducing density anomaly

Fig. 4 Crustal thickness in our study (a) and Zhang et al. (2019) (b)
Crustal thickness between ours and prediction based on isostasy theory (c), between ours and Zhang et al. (2019) (d).

Fig. 5 Free-air gravity anomaly

Fig. 6. Cross sections corrected using liang et al. (2018) (a-d) and Martin-Short et al. (2018) (e-f), bounce points (j), and stations and events (j)

Fig. 7. Estimated "410" and "660" depths and the MTZ thickness corrected using liang et al. (2018) (a) and Martin-Short et al. (2018) (d-f)

- Southeastern AK
 - Thin MTZ (results based on Jiang et al. (2018))
 - Low velocity
 - Hot mantle upwelling
- Central AK
 - Thick MTZ
 - High velocity deeper than 400 km
- Slab in the MTZ
- Alaska Peninsula (SW Alaska)
 - Thin MTZ
 - High velocity above 400 km
 - Slab above the MTZ

Fig. 8 Cross sections along AK78’ and OL’ (locations are marked in Fig. 7) using Jiang et al. (2018) (a-c) and Martin-Short et al. (2018) (d-f)

Reference

Contact
Shangqin Hao, shao@ucsd.edu

Fig. 6. Cross sections corrected using liang et al. (2018) (a-d) and Martin-Short et al. (2018) (e-f)

Fig. 7. Estimated "410" and "660" depths and the MTZ thickness corrected using liang et al. (2018) (a) and Martin-Short et al. (2018) (d-f)

Fig. 8 Cross sections along AK78’ and OL’ (locations are marked in Fig. 7) using Jiang et al. (2018) (a-c) and Martin-Short et al. (2018) (d-f)

Fig. 9. Cross sections along AK78’ and OL’ (locations are marked in Fig. 7) using Jiang et al. (2018) (a-c) and Martin-Short et al. (2018) (d-f)

Fig. 10. Cross sections along AK78’ and OL’ (locations are marked in Fig. 7) using Jiang et al. (2018) (a-c) and Martin-Short et al. (2018) (d-f)

Fig. 11. Cross sections along AK78’ and OL’ (locations are marked in Fig. 7) using Jiang et al. (2018) (a-c) and Martin-Short et al. (2018) (d-f)