USArray TA Surface Pressure Observations within the Atmospheric Science Community

Alexander A. Jacques, John D. Horel, and Erik T. Crosman
Department of Atmospheric Sciences, University of Utah

Plenary Session II: From Groundwater to the Ionosphere
Earthscope National Meeting 2015
Stowe, VT
June 15, 2015
Introduction

- Early 2012: MesoWest research group at Univ. of Utah contacted by IRIS about surface pressure data available from USArray TA
 - March 2012: automated procedures put in place to acquire real-time data from IRIS and store in MesoWest
 - Ingest code still running for TA, CEUSN, and Alaska stations

- Collaboration with Dr. Frank Vernon (co-PI) led to NSF proposal to further research 1 Hz sampled surface pressure observations with respect to atmospheric phenomena

What is MesoWest? (http://mesowest.utah.edu)

- Ongoing project with National Weather Service to collect and disseminate surface observations from various “mesonets”
 - Aviation, fire weather, road weather, public, research, etc.
 - 28,521 active stations reporting as of 1 June 2015
USArray TA and MesoWest (http://mesowest.utah.edu)

• 1 Hz surface pressure observations collected from IRIS
• 5 minute averages produced to satisfy real-time data needs
• Other atmospheric data also collected for TA-Inframet sites
USArray TA and MesoWest (http://mesowest.utah.edu)

- MesoWest data disseminated to NWS Western Region and NOAA Meteorological Automated Data Ingest System (MADIS), which sends to National Centers for Environmental Prediction (NCEP)

http://preview.weather.gov/edd

https://madis-data.ncep.noaa.gov/MadisSurface/
USArray TA Observations for Research Activities

• Additional processing collects 1 Hz surface pressure data on a daily basis and archives in compressed HDF5 format for quick access.

• Web tools also developed (http://meso1.chpc.utah.edu/usarray)

Pressure Perturbation Maps

1 Hz and Filtered Perturbation Time Series
Pressure Time Series Analyses

- Band-pass filters applied to extract perturbations of interest at several different scales of phenomena (Jacques et al. 2015)

1 Hz Actual Observations
- High/low pressure systems, blizzards

Synoptic (30 h – 5 days)
- Diurnal fluctuations, fronts, some convection

Sub-synoptic (4 – 30 h)
- Thunderstorm complexes, gravity waves

Mesoscale (10 min – 4 h)
Pressure Time Series Analyses

- Perturbation “climatologies” provide additional geographical and seasonal information on occurrences of high-impact phenomena

Mesoscale Perturbations (per season) > 3 hPa in Magnitude

Winter

Summer

Spring

Autumn
Pressure Time Series Analyses

- Web tools provide ability to examine individual events

Synoptic Filtered Pressure Falls > 24 hPa/day from 1 Jan 2010 – 28 Feb 2014

Clicking a station on the map will provide links to additional information on these perturbations.

Signature statistics currently available for 1 Jan 2010 – 28 Feb 2014.
Pressure Time Series Analyses

- Web tools provide ability to examine individual events

Synoptic Filtered Pressure Falls > 24 hPa/day from 1 Jan 2010 – 28 Feb 2014

M66A: Synoptic Event Table

<table>
<thead>
<tr>
<th>Begin Time (YYYY/MM/DD)</th>
<th>End Time (YYYY/MM/DD)</th>
<th>Duration (h)</th>
<th>Pressure Change (hPa)</th>
<th>Pressure Rate (hPa/day)</th>
<th>Graphical Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-11-20 17:16</td>
<td>2013-11-27 22:29</td>
<td>29.2</td>
<td>-32.84</td>
<td>-26.98</td>
<td>Click for Graph</td>
</tr>
<tr>
<td>2013-12-14 16:19</td>
<td>2013-12-15 18:28</td>
<td>24.1</td>
<td>-51.85</td>
<td>-31.85</td>
<td>Click for Graph</td>
</tr>
<tr>
<td>2014-02-04 21:04</td>
<td>2014-02-05 22:27</td>
<td>25.4</td>
<td>-26.59</td>
<td>-23.14</td>
<td>Click for Graph</td>
</tr>
<tr>
<td>2014-02-13 02:09</td>
<td>2014-02-14 07:09</td>
<td>29.0</td>
<td>-58.10</td>
<td>-31.61</td>
<td>Click for Graph</td>
</tr>
<tr>
<td>2014-02-15 08:33</td>
<td>2014-02-16 05:17</td>
<td>20.7</td>
<td>-21.18</td>
<td>-24.32</td>
<td>Click for Graph</td>
</tr>
</tbody>
</table>
Pressure Time Series Analyses

- Web tools provide ability to examine individual events

Synoptic Filtered Pressure Falls > 24 hPa/day from 1 Jan 2010 – 28 Feb 2014

Spatial Perturbation Analyses

- Inclusion of USArray TA observations (high temporal resolution) with gridded model data (high spatial resolution) may improve evaluation of perturbations

- University of Utah Two-Dimensional Variational Analysis (UU2DVAR)
 - Start with gridded data that represents “background”
 - Collect observations independent of background
 - Assume background and observation error covariances
 - Use 2D variational approach to map observations onto background to produce an analysis grid

- Further information on UU2DVAR described by Tyndall and Horel (2013)
Spatial Perturbation Analyses

- Prior to analysis, hourly background grids interpolated every 5 min to better utilize temporal resolution of USArray TA

- Grids and observations converted to 1 hour pressure tendency (avoids any elevation conflicts between model terrain and station elevation)

- UU2DVAR analysis performed on 1 hour tendency data and final analysis grid converted to altimeter setting (sea-level pressure)

- Analysis grid time series are band-pass filtered (10 min – 8 h) to better identify perturbations produced by primarily mesoscale processes
Spatial Perturbation Analyses

0000 UTC 24 May 2011 Radar Reflectivity

0000 UTC 24 May 2011 Band-Pass Filtered Altimeter
Spatial Perturbation Identification

- Work underway to develop and test several algorithms to identify large perturbation features within the filtered analysis grids
This research is funded by National Science Foundation Grant Number 1252315. We would like to thank Dr. Frank Vernon of Scripps Institution of Oceanography, the USArray Array Network Facility (ANF), and the Incorporated Research Institutions for Seismology (IRIS) for providing access to live data streams for the USArray project. We would also like to acknowledge the Center for High Performance Computing (CHPC) at the University of Utah.
