Geodetic observations of transient deformation in Southern California

How do we determine which ones are “real”?

EarthScope Institute on the Spectrum of Fault Slip
Portland, Oregon. October 11-14, 2010
Detecting deformation transients: Outline

- Swarms, creep, hydrology in Southern California
 - Pre-PBO background
 - Recent observations of creep, swarms (SoCal & worldwide)

- SCEC blind test exercise
 - Motivation
 - Lessons learned from blind tests in related fields
 - Participants and results so far
Transient deformation in Southern California

- High seismicity rate, dense geodetic coverage
- Vertical deformation
 - Hydrocarbons, water
 - e.g., Lanari et al., 2004
- Contraction across LA
 - e.g., Argus et al., 1999, 2005, Bawden et al., 2001
- Postseismic
 - e.g., Lin & Stein, 2004
- Seismic swarms
 - e.g., Vidale & Shearer, 2006
- Transient fault properties/healing after EQ
 - e.g., Cochran et al., 2003
Transient deformation in Southern California

- High seismicity rate, dense geodetic coverage
- Vertical deformation
 - Hydrocarbons, water
 - e.g., Lanari et al., 204
- Contraction across LA
 - e.g., Argus et al., 1999, 2005
 - Bawden et al., 2001
- Postseismic
 - e.g., Lin & Stein, 2004
- Seismic swarms
 - e.g., Vidale & Shearer, 2006
- Transient fault properties/healing after EQ
 - e.g., Cochran et al., 2003

Aftershocks and stress change, Northridge EQ

Lin and Stein, 2004
Transient deformation in Southern California

- High seismicity rate, dense geodetic coverage
- Vertical deformation
 - Hydrocarbons, water
 - e.g., Lanari et al., 204
- Contraction across LA
 - e.g., Argus et al., 1999, 2005
 - Bawden et al., 2001
- Postseismic
 - e.g., Lin & Stein, 2004
- Seismic swarms
 - e.g., Vidale & Shearer, 2006
- Transient fault properties/
 healing after EQ
 - e.g., Cochran et al., 2003

Vidale & Shearer, 2006
Salton Trough

- Continental/Oceanic transition
 - Thin crust, high heatflow
 - Several volcanic centers
 - Geothermal production

- Swarm activity
 - e.g., Richter, 1958, Hill et al., 1975

- Anomalous stress drops
 - Brune and Allen, 1967

- Triggered slip
 - e.g. Allen et al., 1972, Hudnut & Sieh, 1989
 - Rymer et al., 2002

- EQ w/ precursors
 - 1976 Mesa de Andrade (Ms 5.7)
 - 1980 Victoria (Mw 6.3)
 - 1981 West Moreland (Mw 5.9)
 - 1987 Elmore Ranch (Mw 6.0)
 - 2005 Obsidian Buttes (Mw 5.1)
 - 2010 Sierra El Mayor Earthquake (Mw 7***)
Salton Trough

- Improved interseismic constraints
 - Block models, rates & locking depths
 - e.g., Meade & Hager
 - InSAR/GPS combinations
 - Fialko 2006
- Imperial, S. San Andreas creep
 - Genrich et al, 1997
 - Lyons et al., 2002
 - Lyons & Sandwell, 2003
- Superstition Hills creep
 - e.g., Van Zandt & Mellors, 2006,
 - Wei et al., 2009
- Creep, swarm in stepovers
 - Obsidian Buttes
 - e.g., Lohman & Mcguire, 2007
Salton Trough

• Improved interseismic constraints
 – Block models, rates & locking depths
 • e.g., Meade & Hager
 – InSAR/GPS combinations
 • Fialko 2006
• Imperial, S. San Andreas creep
 – Genrich et al, 1997
 – Lyons et al., 2002
 – Lyons & Sandwell, 2003
• Superstition Hills creep
 – e.g., Van Zandt & Mellors, 2006,
 Wei et al., 2009
• Creep, swarm in stepovers
 – Obsidian Buttes
 e.g., Lohman & Mcguire, 2007
Salton Trough

- Improved interseismic constraints
 - Block models, rates & locking depths
 - e.g., Meade & Hager
 - InSAR/GPS combinations
 - Fialko 2006
- Imperial, S. San Andreas creep
 - Genrich et al, 1997
 - Lyons et al., 2002
 - Lyons & Sandwell, 2003
- Superstition Hills creep
 - e.g., Van Zandt & Mellors, 2006, Wei et al., 2009
- Creep, swarm in stepovers
 - Obsidian Buttes
 e.g., Lohman & Mcguire, 2007
Salton Trough

- Improved interseismic constraints
 - Block models, rates & locking depths
 - e.g., Meade & Hager
 - InSAR/GPS combinations
 - Fialko 2006
- Imperial, S. San Andreas creep
 - Genrich et al, 1997
 - Lyons et al., 2002
 - Lyons & Sandwell, 2003
- Superstition Hills creep
 - e.g., Van Zandt & Mellors, 2006, Wei et al., 2009
- Creep, swarm in stepovers
 - Obsidian Buttes
 - e.g., Lohman & Mcguire, 2007
2005 Obsidian Buttes Swarm

Brothers et al., 2009

Lohman and McGuire (2007)
2005 Obsidian Buttes Swarm

Roland & McGuire, 2009

Llenos et al., 2009
Geothermal Activity

Image from CalEnergy
Local Lithology and Temperature

- T > 350°C at 2 km
- Deeper seismicity?
 - Not encouraged in qtz
 - e.g., Blanpied et al., 1991
 - Buried rhyolitic domes
 - Enhanced hydrothermal circulation?
 - Similar issue in Parkfield area

Hulen and Pulka, 2001
Swarms in South America

Deformation transients not observed

Holtkamp et al., in revision
Mainshock/aftershock sequences in Iran
Mainshock/aftershock sequences in Iran

Mw 6.0

Up to 15 cm of surface deformation
Mainshock/aftershock sequences in Iran

- ~Mw 6
- 4-7 independent interferograms from different tracks
- Up to 15 cm of surface deformation
Mainshock/aftershock sequences in Iran

2005 EQ (2008 similar)

InSAR

Crystalline Basement?

Modified from Nissen et al. 2010
SCEC Blind Test Transient Detection Exercise (SBTTDE)

Need for transient detection algorithms
- real-time monitoring of transient deformation and seismicity
- characterization of signals: What are underlying processes?
- identification of non-tectonic signals
- tracking of data quality
- planning future network to improve detection thresholds.

Systematic monitoring has lagged despite
- growth in permanent GPS and strainmeter networks
- InSAR time series analysis techniques
- growing number of transient events observed world-wide
Lessons learned from other groups:
- Rupture dynamics code validation (Harris et al.)
 - Start simple, then build in complexity
- Source inversion validation (Mai, Page, Schorlemmer)
 - Start with calculation of Green’s functions

Full space, vertical, homogeneous initial stresses

Half space, dipping, variable initial stresses
Lessons learned from other groups:

- Rupture dynamics code validation (Harris et al.)
 - Start simple, then build in complexity
- Source inversion validation (Mai, Page, Schorlemmer)
 - Start with calculation of Green’s functions
Issues going in:

- Temporal/spatial scale of interest?
 - What is achievable, what must be added to meet targets?
 - How long does it take for a detection after transient begins?

- Model vs. signal-based approaches

- Are detected transients tectonic?
Three phases, most recent unveiled at SCEC meeting

- Agnew, Herring provided data, Moraleda-Murray & Lohman pestered people, SCEC funded us!
- First signals spanned very large range, some with overly long timescales
- Phase III included instrument offsets, temporally variable seasonal signal

Team A: Stanford/USGS/JPL (Liu, Moraleda-Murray, Segall)
Team B: MIT (Herring)
Team C: UNR (Kreemer- Zaliapin- Weller)
Team D: Caltech (Simons, Zhan)
Team E: USGS (Langbein)
Team F: UC Riverside (Lipovsky)
Team G: SUNY Stony Brook (Holt)
Team H: JPL (Kedar, Granat, Dong, Parker)
Team I: Woods Hole (McGuire)
Selected approaches

Segall, Fukuda, Murray-Moraleda, Liu, McGuire (Herring)

Network Inversion Filter + Estimated time-dependent probability distribution of smoothing parameter α^2
Selected approaches

Network Strain Filter: McGuire & Segall

Phase 3-Set C: Basis Functions (109)
Selected approaches

Network Strain Filter: McGuire & Segall

Transient detector works best run backwards
Selected approaches

Zhan & Simons
Selected approaches

• Look at data!
 – Langbein

• Assessing strain field after removing long-term model
 – Holt & Abejar
 – Very sensitive to stations coming in and out of network

• Piecewise linear fit to data after removal of seasonal cycles
 – Kreemer, Zaliapin and Weller
 – Potentially very fast, choice of # segments?

• Combo of PCA and other strain analysis approaches
 – Ji & Herring
 – JPL: Granat, Parker, Dong, Kedar
Phase III examples

- Set A, D, F G
 - All same combo of slip on Santa Monica and Elsinore faults, different magnitudes and timing

- Set C
 - Combo of slip on horizontal lower crust, aquifer motion and small faulting region

- Set E
 - Propagating slip on San Andreas

- Set B
 - Real data!
Phase III examples

- **Set A, D, F G**
 - All same combo of slip on Santa Monica and Elsinore faults, different magnitudes and timing

- **Set C**
 - Combo of slip on horizontal lower crust, aquifer motion and small faulting region

- **Set E**
 - Propagating slip on San Andreas

- **Set B**
 - Real data!
Real Data

- Parkfield
- San Sim.
- SG Aquifer
- DV Lake
Team comparison

- **Fault-based Kalman filters, PCA:**
 - Nearly coincident centroid and ellipses for each of the 2-source datasets
 - Catch 1/e behavior of 2-sources very well
 - Miss the 2nd source in each case - human intervention?
 - No sensitivity metrics
 - Identified EQ, aquifer signals in real-data set

- **Strain-based:**
 - Signal minus “master” strain
 - Detections at edge of network controlled by station status?
 - Sensitive to along-strike changes in orientation, where strain is highest?
 - Network strain filter
 - Identifies known and potential new transients in real data

- **Other signal-based**
 - Many false positives - need metric for assessing confidence
 - Don’t require known fault geometries, more flexible
 - Often require pre-removal of “seasonal” signal
• Key issues remaining before “operational”
 – False alarm/false positive rate, etc.
 – Reduction of human interaction

• Science issues
 – What do they mean?
 • Slip on faults vs. mantle flow vs. hydrology vs. “other”
 – False alarm/positive rate
 • What signals would we expect to see?
 • Explore use of independent data sets with complementary strengths
 – Strainmeters, InSAR, seismicity
InSAR time series analysis: Seattle

Independent data, agree to ~ 1mm/yr

Finnegan et al., 2008
DESDynI: Deformation, Ecosystem Science, and Dynamics of Ice

- How do we manage the changing landscape caused by the massive release of energy by earthquakes and volcanoes?

- How are Earth’s carbon cycle and ecosystems changing, and what are the consequences?

- What drives the changes in ice masses and how does it relate to the climate?
2005 Obsidian Buttes Swarm

GPS

Line-length change (mm)

Month/Day, 2005

M 5.1 EQ

Salton Sea

LOS

Profile

Fault

5 km

LOS deformation (cm)

08/27/05-09/21/05

Lohman and McGuire (2007)

Swarms onset